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The first part of this paper surveys the distinctive features of trains of disturbance waves in high-speed
annular two-phase flow. This data is then used to construct a mathematical model that predicts relations
between the speed, height, and spacing of the waves, and the net liquid flow rate. These relations high-
light the importance of the vorticity in the waves, a quantity that has received little experimental
attention.
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1. Introduction

There are several flow regimes in gas liquid two-phase flow, one
of the most important of which is annular flow (Hewitt and Hall
Taylor, 1970). This is the dominant regime in, for example, conven-
tional and nuclear boilers, refrigeration systems, transfer lines and
the extraction of crude oil and natural gas.

In annular flow the gas phase moves in the core of a tube sur-
rounded by a thin liquid film on the tube wall. For most combina-
tions of materials for the gas and liquid phases, in typical flow
regimes, the film surface is composed of small ripples and larger
waves. Some of these are non-coherent and non-persistent (Belt
et al., 2010) but, importantly for heat and mass transfer, there exist
states where the interface can take the form of a train of what have
become known as ‘disturbance waves’. These are large amplitude
waves having a regular height much greater than the minimum
film thickness, and large regular separations, being two or three
orders of magnitude greater than their height.

Disturbance waves are known to cause entrainment of droplets
from the liquid to the gas phase, causing the gas phase itself to be a
two-phase mixture of gas and entrained droplets. The waves also
act as a source of surface roughness acting on the gas flow and
so are a determining influence on the pressure gradient. Thus an
understanding of the character of disturbance waves is essential
when trying to propose phenomenological analyses of annular
two-phase flow.
A schematic picture of the development of the waves, introduc-
ing some of our notation, is shown in Fig. 1.

In this paper we attempt to provide a basic understanding of
these waves, by modelling them mathematically as moving pack-
ets of inviscid liquid. In Section 2, we examine some of the exper-
imental data available to determine the generic character of
disturbance waves. Then in Section 3 we propose a mathematical
model that appears to be consistent with these observations, and
in Section 4 we discuss the predictions of the model and their
implications.

For the higher liquid and gas flow rates discussed in this paper
the effect of inertia dominates over the effect of gravity (see de
Jong and Gabriel, 2003 for a more detailed discussion), and we
therefore ignore gravity throughout. Also, both the gas and liquid
Reynolds numbers, based on the tube radius and film thickness
respectively, are so large that the effects of viscosity can largely
be ignored, as will be the effects of gas compressibility.

2. Experimental data

When annular flow takes place in a transparent tube, the distur-
bance waves can be clearly observed by eye as travelling milky
bands, the milkiness being due to the light scattering effect occur-
ring at their uneven interface. Early results were obtained by
frame-by-frame analysis of cine films (Hall Taylor et al., 1963;
Nedderman and Shearer, 1963), but conductance probe methods
were soon developed which greatly enhanced the speed of analysis
(e.g. Wang et al., 2004).

The early data only related to the macroscale characteristics
of wave velocity, frequency and separation under different
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Fig. 1. Schematic of the development of disturbance waves along the wall of a tube (not to scale). The gas speed is Ug , and initial liquid flow rate is ql0. Interfacial waves form
on the surface of the film and following an initial entry region they grow towards a uniform train with constant wave speed V and separation S. The film thickness on the tube
wall is denoted h; in Section 2 this is partitioned into the uniform sub-layer thickness hs and wave height H ¼ h� hs . The respective maximum heights are denoted h0 and H0.
Section 3 will examine the form of the wave in the moving frame shown in the dashed-line box.
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Fig. 2. Change of wave speed, separation, and liquid flow rate, with distance along
the tube, for different initial liquid flow rates ql0 (mm2/s). The gas velocity Ug is
fixed at 34 m/s. (Data from Wolf et al. (2001)).
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Fig. 3. Wave speed (a) and separation (b) against initial liquid flow, for different gas
speed in a 32 mm tube. The inset in (a) shows the same data for wave speed plotted
as a function of gas speed, for different initial liquid flows. (Data from Wolf et al.
(2001)).
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combinations of liquid and gas flow. The use of conductance probes
and other methods of measurement have become more refined
over time and it is now possible to obtain data, with varying levels
of detail, of the interface shape and hence values of wave height
and minimum thickness. Other methods for obtaining this infor-
mation use laser focussed displacement meters (LFDM) (Hazuku
et al., 2008), planar laser-induced florescence (PLIF) (Schubring
et al., 2010, Pt II) and high-speed back-lit video (Schubring et al.,
2010, Pt I).

These more detailed studies reveal that the interface structure
is very complicated on scales below the disturbance-wave length,
but the disturbance waves themselves show remarkably consistent
properties when viewed on the macro-scale. Indeed, the actual dis-
turbance waves, once formed, remain axially and circumferentially
coherent (Zhao et al., 2013), and the supporting experimental
evidence for these phenomena will be presented in the following
subsections. Unfortunately, the scenario is inevitably obscured by
the small ripples and non-coherent waves which occur on and
between the disturbance waves.

2.1. Spatial evolution of disturbance waves

Most of the following observations have been made using the
valuable data reported by Wolf et al. (2001) and de Jong and
Gabriel (2003). From the work of Wolf et al. it is apparent that
interfacial waves form very close to the tube inlet where the gas
and liquid phases first intersect. Moving along the tube, there is
a transition region where the waves both accelerate and coalesce.
During this transition region, the waves become coherent and, as
the work of Zhao et al. (2013) shows, the waves become circumfer-
entially coherent (i.e. axisymmetric) beyond a distance of about 20
tube diameters (D); it is only after this distance we can sensibly
refer to the interfacial variations as disturbance waves.

As Fig. 2(a,b) shows, the velocity V and separation S of these
coherent waves become essentially constant after a length
L � 30D. However, as mentioned in the introduction, interfacial
waves often generate droplet entrainment, so that the liquid flow
in the film drops off with distance, as shown in Fig. 2(c). This
suggests a downward trend towards a constant average film
thickness, but over a longer relaxation distance than for V and S.
This reflects the fact that the change in film flow is determined
by the balance between the rate of entrainment and the rate of
deposition of droplets from the gas phase back into the film. For
the higher liquid flows the cumulative loss of mass due to entrain-
ment can be as much as 50%. However this reduction takes place
over a distance of at least L=D ¼ 100, much longer than the
L=D ¼ 30 needed to reach the constant velocity and constant
separation of the waves.

We infer from this that the entrainment of droplets, while
important in determining the liquid flow in the film, is not a key
mechanism for the establishment and persistence of the distur-
bance waves. Henceforth, we will be concerned with the behaviour
of the disturbance waves at long distances from the inlet.
2.2. Dependence on flow rates

We begin by recalling the work of Wolf et al. (2001), who
obtained their data in a 31.8 mm tube and took readings at
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L=D ¼ 300, by which stage a near equilibrium condition has been
attained. Fig. 3a indicates that the wave velocity increases weakly
with the liquid flow but increases more strongly, and approxi-
mately linearly, with the gas velocity, while Fig. 3b shows that
the equilibrium separation is essentially independent of the gas
velocity. There is a decreasing separation with increasing liquid
flow but this also tends to a fairly constant value of about 150 mm
at large flow rates, regardless of gas velocity. We also remark that
the wave speed is always an order of magnitude less than the gas
speed, a fact that will simplify the modelling in Section 3.

It is interesting to compare these results with those of de Jong
and Gabriel (2003), who took their readings in a 9.5 mm tube at
a distance of L=D ¼ 110. Their separation data is given in Fig. 4,
which similarly indicates that the separation tends to a constant
value independent of both liquid and gas flow rates, as Ug

increases. In this case the limiting separation appears to be slightly
lower, at about 130 mm.

The literature we have cited reveals that the general character-
istics of disturbance waves in the developed region are:

(a) After a short distance L=D ¼ 30 the waves attain a constant
speed which is proportional to the gas velocity and only
weakly dependent on the liquid flow.

(b) The separations between the waves converge towards a con-
stant which is independent of both liquid flow and gas
velocity.

We now turn to the evidence concerning the profile of the waves.

2.3. Transport in the disturbance waves and sub-layer

It is not straightforward to find reliable data for the wave shape,
largely because most experiments have been designed to study
other features of annular flow. However, the data we present here
suggest that it will be useful to divide the total film flow into the
flow in the disturbance waves, and a ‘sub-layer’ of constant
thickness. This will enable us to identify the extent to which liquid
transport is dominated by the disturbance waves. Since the tube
diameter greatly exceeds the film thickness, we adopt a two-
dimensional model in which the film thickness h is partitioned as
follows,

h ¼ hs þ H; ð1Þ

here H is the wave thickness, and hs is an average minimum thick-
ness, to be defined in more detail in the following subsection. If the
flow rate conveyed by the sub-layer is qs, and the waves move with
speed V and have an average wave height Hm, then, anticipating that
there is small net flow through the wave, the total liquid flow rate is
similarly partitioned as

ql ¼ VHm þ qs: ð2Þ

The relative importance of these terms can be assessed using
measurements of wave speed and height. Hazuku et al. (2008)
obtained measurements of interfacial wave profiles and sub-layer
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Fig. 4. Separation against gas speed for different initial liquid flow rates in a 9.5 mm
tube. Data from de Jong and Gabriel (2003).
thicknesses in an 11 mm tube at a distance 250D from the inlet
using a laser focussed displacement meter (LFD), for two gas veloc-
ities and four liquid flow rates. Fig. 5(a) shows these results plotted
in the form VHm against ql0.

Similar results were obtained by de Jong and Gabriel (2003) in a
9.525 mm tube at a distance 110D from the inlet using a parallel
wire conductance technique, for gas velocities between 10 and
20 m/s and liquid flows between 100 and 700 mm2/s. Fig. 5b shows
these results.

Both sets of data suggest that almost all the liquid flow is con-
veyed by the disturbance waves, the flow rate in the sublayer, qs,
being negligible in comparison with the net flow in the waves.
Since the vast majority of the liquid flow occurs in the waves,
the existence of the sub-layer may be considered irrelevant to
the mathematical model in the following section.

We remark that a similar separation between sub-layer and
waves was employed by Miya et al. (1971), in their study of what
they termed ‘roll waves’. In that case the gas velocity was lower
and the sub-layer carried a more substantial fraction of the total
liquid flow, but nonetheless the profile of the roll waves were quite
similar to those of our disturbance waves.
2.4. Surface profiles

The paper of Wang et al. (2004) displays a film-thickness/time
trace for flows of Ug ¼ 24:3 m/s and ql0 of 285 m2/s in a
9.525 mm diameter tube (Fig. 3 in that paper). We have repro-
duced this trace as a spatial profile in Fig. 6, assuming a steady
travelling wave velocity to convert the time domain to the space
domain. The wave velocity is not quoted by Wang et al., but a value
of 2.1 m/s is used since this is consistent with other measurements
by de Jong and Gabriel (2003) for a similar tube and at similar flow
rates. In Fig. 6 we have drawn the trace in terms of wave height H,
subtracting the average of the minima between wave crests for the
sublayer thickness hs.

Wave profiles are also displayed in the paper of Zhao et al.
(2013). Their Fig. 9 shows how the wavy surface evolves into a ser-
ies of disturbance waves, which progressively aggregate to form a
more well-defined sequence by L=D ¼ 58. As mentioned earlier,
they also show their disturbance waves becoming circumferen-
tially coherent after a distance of about 20D. Figure 14 of Zhao
et al. shows time traces taken at four circumferential positions at
L=D ¼ 58 and at Ug ¼ 40 m/s and ql0 ¼ 300 mm2/s. In Fig. 7 we
reproduce the trace for the probe at the 0� position, assuming a
wave velocity of 4.1 m/s, which is predicted from the data of
Wolf et al. (2001).

We emphasise that the axes in Figs. 6 and 7 are not to scale.
From the point of view of the modelling, the most important prop-
erty of the waves, apart from their uniform velocity and spacing, is
that they have extremely small aspect ratio, of order 10�2. We also
note that the wave train in Fig. 6 suggests that the slope of the lee-
ward face changes more abruptly than the slope of the upwind
face.
3. A mathematical model

3.1. Setup

We now construct a mathematical model for disturbance waves
that are sufficiently far downstream to have reached a steady pro-
file. The waves are spatially periodic, with spacing S, and move
with constant speed V. It is convenient to work in a frame moving
with this speed V with respect to the fixed laboratory frame, as in
Fig. 1. The initial liquid flow rate per unit of the tube perimeter is
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Fig. 5. Liquid flow rate in disturbance waves VHm against initial liquid flow rate ql0. Data from (a) Hazuku et al. (2008) and (b) de Jong and Gabriel (2003). In (a) the different
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x (mm)

H
 (

m
m

)

0 50 100 150 200 250 300 350 400

0
0.2
0.4
0.6
0.8

Fig. 6. Spatial wave profile showing film thickness above sub-layer. The waves are moving to the right. Vertical lines mark the boundaries between waves used for
calculations in Section 4. Inferred from Wang et al. (2004).

x (mm)

H
 (

m
m

)

0 50 100 150 200 250 300

0

0.2

0.4

Fig. 7. Spatial wave profile showing film thickness above sub layer. Inferred from
Zhao et al. (2013).

1 We remark that our early attempts to model the vorticity in a disturbance wave
by one or more discrete vortices in the wave led to unrealistic wave profiles.
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Fig. 8. Schematic illustration of a single disturbance wave in the moving frame.
Panel (b) is the mathematical idealisation of (a), ignoring sub-layer. Region I is
irrotational gas, region II is constant vorticity liquid, region III is constant vorticity
gas.
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ql0, and we ignore any entrainment, so ql ¼ ql0 is the liquid flux that
is transported in the waves and underlying sub-layer.

From the discussion in Section 2.3, we neglect liquid flow
within the sub-layer, and take y ¼ HðxÞ to be the height of the
liquid interface above the sub-layer, y being the distance from
the top of the sub-layer and x being the axial coordinate in the
moving frame. The total liquid flow rate transported by the waves
is then

ql ¼
V
S

Z S

0
HðxÞdx: ð3Þ

For a prescribed ql, this expression can be used to determine the
wave speed V once HðxÞ and S are known. As remarked in connec-
tion with Fig. 3(a), it is an experimental observation that the waves
move much slower than the gas, so the average gas speed in the
moving frame is essentially the same as the prescribed gas flow
rate, Ug .

Before we write down a model for this configuration, we recall
that several high Reynolds number two-phase flows in the litera-
ture share the characteristic geometry of interfaces with small
slope, and thin regions that have closed streamlines in the moving
frame. For example Childress (1965) and O’Malley et al. (1991)
have analysed flow past a backward facing step, and Fitt and
Latimer (2000) and Riley (1987) have considered flow past sails
and smooth indentations, respectively.

The commonly accepted strategy is to assume that when such
flows have attained steady state, the cumulative action of viscous
forces at the interface is such that vorticity within the regions of
closed streamlines is constant; this is in accordance with the Pra-
ndtl-Batchelor theorem (Batchelor, 1956). This, when coupled with
the slenderness assumption, allows the dynamics of these regions
to be described simply enough for ‘effective’ boundary conditions
to be deduced for the perturbation they cause to the outer gas flow,
which is nearly uniform. When physically acceptable smoothness
conditions are applied at the extremities of the constant vorticity
regions, nonlinear singular integral equations can be written down
for the interface between the gas and liquid phases. This is the
procedure we adopt below.1
3.2. Dimensional model

A single wave in the moving frame is shown in Fig. 8(a). The
waves, which are separated by a distance S, are assumed only to
have appreciable depth over the region 0 < x < ‘þ. As remarked
in Section 2.3, the diameter of the tube is large enough that the
problem can be considered in a two-dimensional (S-periodic) half
space y > 0 with far field gas flow at speed Ug .
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Following the discussion above, our model for the developed
waves is as isolated regions of unknown constant vorticity liquid,
behind which the gas separates to produces a recirculating wake,
which also has constant vorticity. As remarked earlier, the leeward
faces are steeper than the upwind faces, as in Fig. 8(b), in which the
extraneous sub-layer has been omitted.

3.2.1. Gas region I (potential flow)
Assuming the gas is irrotational, the flow in region I is a poten-

tial flow, and we write the velocity there as ðug ;vgÞ ¼ ðUg ;0Þ þ r/.
We have

r2/ ¼ 0 HðxÞ < y; ð4Þ
/y ¼ ðUg þ /xÞH0 on y ¼ HðxÞ; /! 0 as y!1; ð5Þ

whilst Bernoulli’s equation on the streamline y ¼ HðxÞ is

pg þ
1
2
qgðUg þ /xÞ

2 þ 1
2
qg/

2
y ¼

1
2
qgU2

g on y ¼ HðxÞ; ð6Þ

where qg is the gas density, pg is the gas pressure, and the choice of
constant on the right-hand side corresponds to zero stagnation
pressure.

3.2.2. Liquid region II (constant vorticity)
In region II, the liquid is assumed to have constant vorticity x,

and the liquid velocity is described by a stream function w, such
that ðul;v lÞ ¼ ðwy;�wxÞ. We have

r2w ¼ �x 0 < y < HðxÞ; 0 < x < ‘þ; ð7Þ
w ¼ 0 on y ¼ 0 and y ¼ HðxÞ; 0 < x < ‘þ; ð8Þ

with Bernoulli’s equation on the streamline y ¼ HðxÞ giving

pl þ
1
2
qljrwj2 ¼ P on y ¼ HðxÞ; 0 < x < ‘þ; ð9Þ

for liquid density ql, liquid pressure pl, and some unknown constant
P.

3.2.3. Gas region III (constant vorticity)
In the wake region III, the gas is also assumed to have an

unknown constant vorticity ~x, and its velocity is described by
the stream function ~w, such that ðug ;vgÞ ¼ ð~wy;�~wxÞ. We have

r2 ~w ¼ � ~x HðxÞ < y < gðxÞ; ‘� < x < S; ð10Þ
~w ¼ 0 on y ¼ HðxÞ and y ¼ gðxÞ; ‘� < x < S; ð11Þ

with Bernoulli’s equation on the streamline y ¼ gðxÞ giving

~pg þ
1
2
qg jr~wj2 ¼ ~P on y ¼ gðxÞ; ‘� < x < S; ð12Þ

where ~pg is the gas pressure in this region, and ~P is also an unknown
constant.

3.2.4. Interface conditions
The pressure is continuous at the interfaces y ¼ HðxÞ and

y ¼ gðxÞ, so

pg

��
y¼H
¼ pljy¼H 0 < x < ‘�; ð13Þ

pg

��
y¼g ¼ ~pg

��
y¼g ‘� < x < S: ð14Þ

We also require continuity of pressure across the liquid–gas inter-
face in the leeward region,

pljy¼H ¼ ~pg

��
y¼H

‘� < x < ‘þ: ð15Þ

As we shall see below, in the small aspect ratio limit it becomes
impossible to satisfy this condition with ‘� – ‘þ, and we will later
impose pressure continuity between regions II and III directly at
‘ ¼ ‘� ¼ ‘þ, as in Fig. 9. For now however, we proceed with (15).
Finally, we also assume that neglected viscous effects ensure
smooth attachment and reattachment of the streamlines, so

Hð0Þ ¼ H0ð0Þ ¼ 0; gðSÞ ¼ g0ðSÞ ¼ 0; ð16Þ
Hð‘�Þ ¼ gð‘�Þ; H0ð‘�Þ ¼ g0ð‘�Þ: ð17Þ
3.3. Dimensionless model

By observations such as those in Figs. 6 and 7, the liquid thick-
ness H is small compared to the spacing and the length of the
waves. Hence, we scale x and y with the separation S;H and g with
the wave height H0, and define the small parameters

e ¼ H0

S
; q ¼

qg

ql
: ð18Þ

The velocity perturbation in the gas will be of order eUg , and the
liquid velocity will therefore be of order e1=2q1=2Ug , so as in
O’Malley et al. (1991) or (Riley, 1987) we scale

/ � eUgS; pg ;pl; ~pg ; P; ~P � eqgU2
g ; ð19Þ

w � q1=2e1=2UgH0; ~w � e1=2UgH0; ð20Þ

x � q1=2e1=2 Ug

H0
; ~x � e1=2 Ug

H0
: ð21Þ

The linearised problem for the gas in region I (taking e� 1) is then

r2/ ¼ 0 y > 0; 0 < x < 1; ð22Þ
/y ¼ H0 on y ¼ 0; /! 0 as y!1; ð23Þ
pg þ /x ¼ 0 on y ¼ 0: ð24Þ

Within the liquid and the wake it is convenient to write y ¼ eY , and
the leading order problem in region II, 0 < x < ‘�, is then

wYY ¼ �x 0 < Y < HðxÞ; ð25Þ
w ¼ 0 on Y ¼ 0 and Y ¼ HðxÞ; ð26Þ

pl þ
1
2

w2
Y ¼ P on Y ¼ HðxÞ; ð27Þ

and the problem in region III, ‘� < x < 1, is

~wYY ¼ � ~x HðxÞ < Y < gðxÞ; ð28Þ
~w ¼ 0 on Y ¼ HðxÞ and Y ¼ gðxÞ; ð29Þ

~pg þ
1
2

~w2
Y ¼ ~P on Y ¼ HðxÞ: ð30Þ

The pressure continuity conditions at the interfaces are

pg

��
y¼0
¼

pljY¼H 0 < x < ‘�;

~pg

��
Y¼g ‘� < x < 1;

(
ð31Þ

pljY¼H ¼ ~pg

��
Y¼H ‘� < x < ‘þ: ð32Þ

The boundary conditions for smooth detachment and reattachment
at the ends of the wave are

Hð0Þ ¼ H0ð0Þ ¼ 0; gð1Þ ¼ g0ð1Þ ¼ 0; ð33Þ
Hð‘�Þ ¼ gð‘�Þ; H0ð‘�Þ ¼ g0ð‘�Þ: ð34Þ

Finally, the whole solution should be periodic with period 1, and the
maximum of H should also be 1 (by the choice of scaling).

We must solve for the potential /, the stream functions w and ~w,
and the interface position HðxÞ. The unknown parameters, as yet,
are x; ~x; P; ~P; ‘� and ‘þ, which are to be determined as part of
the solution. Although we will be able to argue that there is a
unique dimensionless solution, we must remember that the
separation length S and the wave height H0 used in the non-
dimensionalization are also unknown. Such lack of uniqueness
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must be anticipated for a purely inviscid theory, and we shall see
that it results in there being a two-parameter family of solutions.

Once HðxÞ has been found, the dimensionless average wave
height is

r ¼
Z ‘þ

0
HðxÞdx; ð35Þ

and the liquid flux condition (3) then determines the dimensional
wave speed as

V ¼ ql

rH0
: ð36Þ
3.4. Impossibility of a shallow leeward face

The solution to the liquid problem (25)–(27) in region I is rather
trivially

w ¼ 1
2
xYðH � YÞ; ) pljY¼H ¼ P � 1

8
x2H2; ð37Þ

while the problem (28)–(30) in region III has solution

~w ¼ 1
2

~xðg� YÞðY � HÞ;

) ~pg

��
Y¼g ¼ ~pg

��
Y¼H
¼ ~P � 1

8
~x2ðg� HÞ2; ð38Þ

The pressure condition (32) on the liquid–gas interface in
‘� < x < ‘þ therefore requires

~P � 1
8

~x2ðg� HÞ2 ¼ P � 1
8
x2H2: ð39Þ

From x ¼ ‘� where H ¼ g, this determines P ¼ ~P þ 1
8 x2gð‘�Þ2, and so

for x ¼ ‘þ where H ¼ 0 it would require

�1
8

~x2gð‘þÞ2 ¼
1
8
x2gð‘�Þ2: ð40Þ

This is evidently not possible (except in the uninteresting case
x ¼ ~x ¼ 0). We are thus led to the conclusion that it is impossible
to have the constant vorticity liquid region and the constant vortic-
ity wake region overlapping – at least in the shallow aspect ratio
approximation. The interface must be steep enough to be treated
instead as the abrupt transition in Fig. 9, at x ¼ ‘, and we impose

pl ¼ ~pg at x ¼ ‘; ð41Þ

Having steepened the leeward face in this manner, it is then conve-
nient to reduce the notation by redefining HðxÞ as both the liquid–
gas interface (in x < ‘) and the separating gas streamline (in x > ‘),

HðxÞ ¼
HðxÞ 0 < x 6 ‘;

gðxÞ ‘ < x < 1:

�
ð42Þ
3.5. Reduction to an integral equation

The gas problem (22)–(24) has solution given by the periodic
Hilbert transform (e.g. Carrier et al., 1966)

pg

��
y¼0
¼ �

Z
--

1

0
H0ðnÞ cot pðx� nÞdn; ð43Þ
0 S

I I

I

I I I

Fig. 9. Schematic of the model wave in the limit ‘� ¼ ‘þ ¼ ‘.
and the pressure condition (31) requires this to balance the pres-
sure in the liquid and the wake. The liquid pressure was given ear-
lier in (37), and with the modified notation the wake problem (28)–
(30) has solution

~w ¼ 1
2

~xYðH � YÞ; ) ~pg

��
Y¼H
¼ ~P � 1

8
~x2H2; ð44Þ

on ‘ < x < 1. Combining, we see that the interface therefore satisfies
a Fredholm integral equation of the second kind, namely

Z
--

1

0
H0ðnÞ cot pðx� nÞdn ¼

�P þ 1
8 x2H2 0 < x < ‘;

�~P þ 1
8

~x2H2 ‘ < x < 1;

(
ð45Þ

with conditions

Hð0Þ ¼ H0ð0Þ ¼ Hð1Þ ¼ H0ð1Þ ¼ 0; ð46Þ

and with

P � 1
8
x2Hð‘Þ2 ¼ ~P � 1

8
~x2Hð‘Þ2: ð47Þ
3.6. Solution of the integral equation

We now make the key observation that, if ~x ¼ x, then from
(47) ~P ¼ P, and the problem in (45) is identical over the two inter-
vals. It is therefore equivalent to a train of isolated liquid packets
with constant vorticity interacting with an unseparated potential
flow, the interface HðxÞ satisfying

Z
--

1

0
H0ðnÞ cotpðx� nÞdn ¼ �P þ 1

8
x2H2;

Hð0Þ ¼ 0; H0ð0Þ ¼ 0; max
0<x<1

H ¼ 1: ð48Þ

Although it is not immediately clear that this is the only possible
situation in which the integral Eq. (45) has a solution, we have been
unable to find convergent numerical solutions with ~x – x. We
remark that although the dimensionless vorticities are the same
in the liquid and wake regions for this solution, the physical vortic-
ity is not the same because they have been scaled differently.

Somewhat intriguingly, the problem with ~x ¼ x in (48) is then
independent of ‘. Having thus determined the profile HðxÞ for the
combined wave height and separating streamline, we can seem-
ingly choose any location we like for the separation point ‘ and
the steep leeward face of the wave. It is apparent that the solution
for HðxÞ is symmetric, giving rise to a pressure minimum at the
midpoint. We therefore argue on physical grounds that this is
the most reasonable location for the separation of the gas wake
from the film, so that ‘ ¼ 1

2 and Hð12Þ ¼ 1.
The problem (48), with symmetry about x ¼ 1

2, has been solved
numerically using the method of Forbes (1985), and the solution is
shown in Fig. 10. Unique values of P and x are determined, and we
denote the latter as x� � 7:62 for use below.

Briefly, the numerical method consists of discretizing the inter-
face on a uniform grid xi ¼ i=N; i ¼ 0; . . . N, and solving (48) as a
nonlinear algebraic system for the values Hi; P, and x. The integral
transform is calculated using a simple trapezium rule with the
derivatives H0ðnÞ and the transform kernel cotpðx� nÞ evaluated
at midpoints nj ¼ 1

2 ðxj þ xjþ1Þ; this symmetric discretization is suf-
ficient to negotiate the singularity of the kernel at n ¼ x. Values
of H0 ¼ HN ¼ 0 are imposed at the end points, and the integral
equation is satisfied at each of the N � 1 interior points. The
additional constraints H ¼ 1 at the mid point, and H0ðxÞ ¼ 0 at
x ¼ 0 effectively serve to determine P and x.

The key result to follow from this solution is given by the flux
condition (36), which determines the wave speed as
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Fig. 10. Numerical solution of (48) for HðxÞ with Hð12Þ ¼ 1, and with the interface
between liquid and wake taken to lie where the pressure gradient changes sign at
‘ ¼ 1

2. The lower panel shows the corresponding pressure from (43). The corre-
sponding Bernoulli constant is P� � 1:81, and the vorticity is x� � 7:62.

Table 1
Estimates of r inferred from the data of Wang et al. (2004). Average and maximum
wave heights are taken directly from that paper, and the area and separation are
found by integrating the trace shown in Fig. 6.

Wave H0 (mm) Hm (mm) A (mm2) S (mm) r (53) r (54)

1 0.774 0.129 19.26 127.7 0.166 0.195
2 0.692 0.169 18.46 140.4 0.244 0.190
3 0.633 0.153 18.93 118.1 0.214 0.253
4 0.692 0.153 16.63 108.5 0.221 0.222
5 0.762 0.157 12.59 83.0 0.206 0.199
Mean 0.210 0.201
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V ¼ ql

rH0
; ð49Þ

where r is the area beneath half of the profile,

r �
Z 1=2

0
HðxÞdx � 0:183: ð50Þ

We remark that this does not unfortunately provide a prediction of
the wave velocity, due to the non-uniqueness of the wave height H0,
which must be determined by some additional physics but which is
likely to depend on both of the gas and liquid flow rates. The miss-
ing physics concerns the detailed role of viscosity in establishing
the constant vorticity regions; similar non-uniqueness questions
arose in Riley (1987).

Similarly, the unique value found for the dimensionless vortic-
ity does not mean we have determined the actual physical vortic-
ity, since that also depends on the undetermined separation and
height. However, redimensionalizing that value, we predict a rela-
tionship between the dimensional vorticity, wave separation S and
wave height H0, namely

qlH0Sx2 ¼ x2
�qgU2

g : ð51Þ
Table 2
Estimates of r inferred from the data of Zhao et al. (2013).

Position 270� 180� 90� 0� Mean

h0 (mm) 0.360 0.395 0.404 0.387 0.386
hm (mm) 0.123 0.131 0.130 0.126 0.128
hs (mm) 0.087 0.092 0.092 0.092 0.091
Hm (mm) 0.036 0.039 0.038 0.034 0.037
H0 (mm) 0.273 0.303 0.312 0.296 0.296
r 0.133 0.128 0.123 0.116 0.125
4. Discussion

Our mathematical model suggests that there is a two-parame-
ter family of solutions for the waves. The most natural parameters
to take are the spacing S and the height H0, and the fundamental
results to follow from the analysis are the wave area and liquid flux
transported by the wave,

A ¼ SHm ¼ rSH0; ql ¼ VHm ¼ rVH0; ð52Þ

where the model predicts r � 0:183. It is possible to use certain
specific pieces of data to indicate support for this shape factor,
either from

r ¼ Hm

H0
; ð53Þ

or from

r ¼ A
H0S

: ð54Þ

We apply these estimates for the five wave crests seen in the exper-
imental data in Fig. 6. The value used for substrate thickness hs is an
average of the minimum values, in this case 0.32 mm. The results
are summarised in Table 1.

These r values are derived from a very small sample but they do
indicate a value not far from the theoretical model prediction of
0.183. However it should also be noted that the traces show the
presence of intermediate ripples with heights considerably less
than the heights of the main waves. From the reported frequency
data it is apparent that these are also counted as disturbance waves
and they are included in any evaluation of average interface height
or area under the wave. Of course, such waves are not considered
in our theoretical model.

Values of r can also be inferred from the paper by Zhao et al.
(2013), from which Fig. 7 is taken. Their Fig. 14 shows time traces
taken at four circumferential positions at a distance of 58D and at
Ug ¼ 40 m/s and ql0 ¼ 300 mm2. Eight large waves are shown but
again there are a number of intermediate ripples. Table 2 shows
the numbers, which are the average value for the eight larger
waves. This time the r value is less than the model value but again
is only one result from a small sample. The particular wave shape
in Fig. 7, shows the same general shape as the model. The area
under the graph between the two marked limits is
13.5 mm2; S ¼ 163 mm and H0 ¼ 0:386. Hence the r value for that
particular wave is 0.215.

Our prediction of r is also in accordance with estimates of
around 5 for the ratio of maximum wave height to mean thickness
reported by Hewitt and Nicholls (1969).

The second main conclusion of the model is the relationship
(51) between wave separation, height, and vorticity,

qlH0Sx2 � 58qgU2
g : ð55Þ

We can use experimental data for H0; S and Ug to calculate the vor-
ticity from this relationship for different conditions. The result is
hard to test, however, since we have no clear method of explicitly
determining the vorticity from available data. A validation of this
relationship must await future development of measurement tech-
niques and detailed experiments.

Nevertheless, it is important to investigate whether the key fea-
tures of disturbance waves identified in Section 2 are in fact consis-
tent with this relationship. We recall from Section 2.2 that (i) the
wave separation S was seen to be almost independent of both
gas speed and liquid flow rate, and (ii) the wave speed V was found
to increase roughly linearly with gas speed but largely independent
of liquid flow. Although it is not possible to predict these observa-
tions because of the non-uniqueness of the solution of our dimen-
sional model, we can see from the result in (49) that this behaviour
for V would require H0 to vary in proportion to ql=Ug . Adopting
such a dependence in (55) and remembering that S is nearly
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independent of both Ug and ql, our theory necessarily implies,
when coupled with this observational evidence, that the vorticity
varies with Ug and ql according to

x ¼ C
U3=2

g

q1=2
l

; ð56Þ

for some scaling constant C, with dimensions 1/length1/2.
We have used the data of de Jong and Gabriel (2003) to test this

relationship; some of their data were shown earlier in Fig. 4. We
infer experimental measurements of H0; S, and V, for varying gas
speed and initial liquid flow rates. From those, we calculate x
using (55) and ql using (52). Fig. 11 shows the results, and suggests
that indeed the vorticity follows (56) quite closely; this in turn
implies that

S ¼ a
V
Ug

; ð57Þ

for all V and Ug , where a ¼ rx2
�qg=qlC

2. However, to go one step
further and allow the model to truly predict this behaviour, a more
detailed theory – or better still experimental evidence – will be
needed to explain the dependence of the vorticity seen in (56).
We emphasise that (56) has been neither derived nor refuted by
the current model; it is simply the relationship that is anticipated
to yield consistency with the observations. The fact that the exper-
imental data in Fig. 11 agrees with this dependence nevertheless
lends support to our theory.

5. Conclusion

We have presented a mathematical model which provides new
insights into the most distinctive features of disturbance waves in
two-phase pipe flow, in the regime in which inertial forces domi-
nate. Over a wide range of inlet liquid and gas flow rates, these
waves have heights H0 and spacing S that are constant in a frame
moving with the wave speed V, and our model predicts relations
between these quantities and the inlet flows.
By exploiting the smallness of the aspect ratio of the waves, and
using the Prandtl-Batchelor theorem, we have simplified the free-
boundary problem for the liquid/gas interface into a single integral
equation. In dimensional form, this equation contains just two of
the parameters, V ;H0 as well as the vorticity in the disturbance
waves x. However, the model can be non-dimensionalised and
solved numerically to give a unique disturbance wave profile,
and this implies that the net liquid flow in the waves is
ql � 0:183VH0, which is in good agreement with experimental
evidence.

The model is also consistent with the scenario that the distur-
bance waves transport the majority of the liquid flow, riding on a
liquid sublayer in which there is negligible flow and whose
thickness is essentially irrelevant. When our model predictions
are combined with experimental information from de Jong and
Gabriel (2003), the results suggest that the vorticity in the wave
is proportional to U3=2

g =q1=2
l , as in Fig. 11. This in turn suggests that

S is related linearly to V=Ug through the relationship in (57).
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